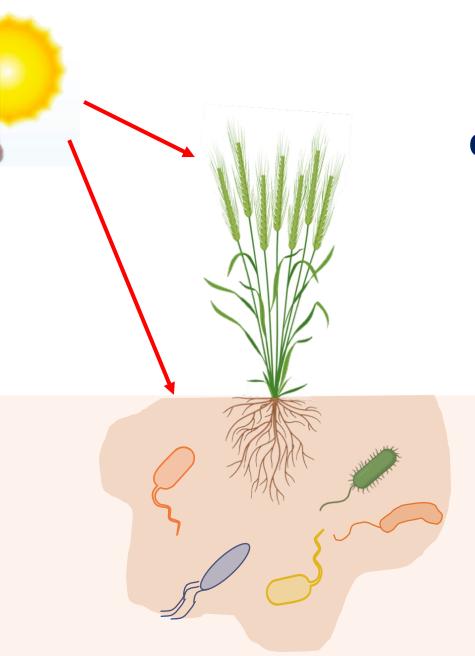
Améliorer la résistance des plantes aux bio-agresseurs : de nouvelles voies ouvertes par les biotechnologies


T. Langin

Biotechnologies végétales et Changement climatique

Effets du changement climatique

- Stress hydrique et thermique des cultures
- Perturbation des calendriers culturaux
- Accélération de la phénologie des végétaux (cycles)
- Augmentation de la croissance des végétaux
- Sécheresse du sol

•

Impact direct du changement climatique sur les résistances aux maladies ou aux bioagresseurs

Effets du changement climatique

- Stress hydrique et thermique des cultures
- Perturbation des calendriers culturaux
- Accélération de la phénologie des végétaux (cycles)
- Augmentation de la croissance des végétaux
- Sécheresse du sol
- Risque accru de maladies et ravageurs

•

Impact du changement climatique sur les maladies des plantes et l'évolution des bioagresseurs ?

Elévation de la température

Augmentation des épisodes de sécheresse aux latitudes moyennes

Elévation de la concentration en [CO₂]atm

Un impact différent en fonction de la proximité à l'équateur (Europe, Chine particulièrement vulnérable)

. . .

- Augmentation de la sensibilité des plantes résultant d'un mauvais état physiologique
- Evolution des cortèges parasitaires
- Evolution des populations naturelles des pathogènes et des ravageurs : augmentation fréquences de souches (multi-)résistantes aux traitements, apparition de souches virulentes avec un contournement plus rapide des résistances, apparition de souches plus agressives...
- (ré-)émergence de nouvelles maladies (rouille noire, wheat blast, ...)
- Evolution des fréquences d'apparition des maladies

	Culture	Agent pathogène	Evolution
	Orge	oïdium (<i>Blumeria graminis</i>) charbon (<i>Ustilago hordei</i>)	diminution augmentation
	Maïs	charbon (<i>Ustilago maydis</i>)	diminution
	Pomme de terre	mildiou (<i>Phytophthora infestans</i>) alternariose (<i>Alternaria solani</i>)	augmentation pas de changement
	Riz	rhizoctone (Rhizoctonia <i>solani</i>) Pyriculariose (<i>Magnaporthe oryzae</i>)	augmentation augmentation
	Soja	mildiou (<i>Peronospora manshurica</i>) tache septorienne (<i>Septoria glycines</i>)	diminution augmentation
A CONTRACTOR OF THE PARTY OF TH	Blé	rouille jaune (<i>Puccinia striiformis</i>) fusariose (<i>Fusarium sp</i> .)	augmentation augmentation

Luck et al., 2011

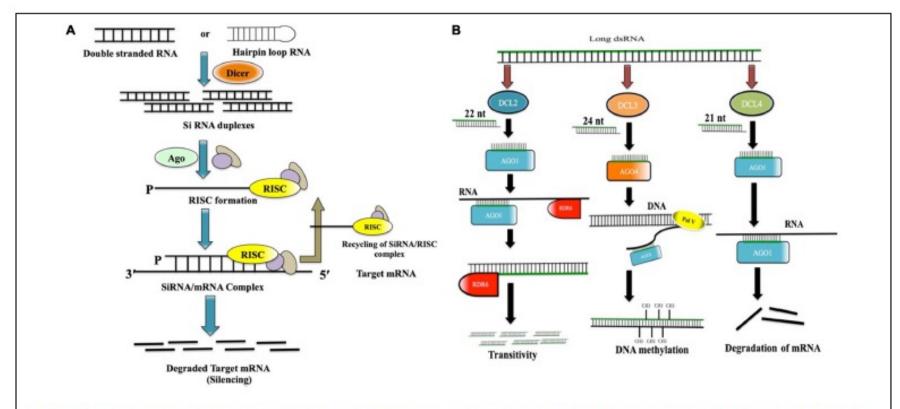
Améliorer la résistance des plantes aux bio-agresseurs

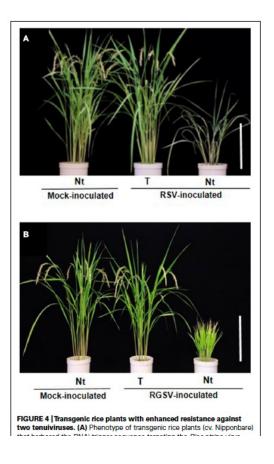
Contribution des biotechnologies

Table 1 Examples of genetic disease solutions currently available for bacterial, viral, fungal and comycete pathogens.

Point of intervention	GM technology	Example	References
Pathogen perception	Interspecies transfer of PRRs	EF-Tu receptor (EFR)	Lacombe et al. (2010); Schoonbeek et al. (2015); Schwessinger et al. (2015); Boschi et al. (2017); Kunwar et al. (2018)
	Interspecies transfer of NLRs	Rpi-Vnt1 Bs2	Foster et al. (2009); www.isaaa.org/ Horvath et al. (2012)
	Modification of NLRs	Pikp-1	Magbool et al. (2015)
	NLR protease trap	PBS1 kinase	Kim et al. (2016)
	NLR resurrection	NRCs (NLR helpers)	Wu et al. (2017)
Pathogen effector	Deletion of effector targets	MAPK3K StVIK1	Murphy et al. (2018)
binding	Modification of effector binding sites		Zhang et al. (2015)
DITIONING	Deletion of effector binding sites	Os11N3/OsSWEET14	Li et al. (2012)
	Addition of effector binding sites	Xa27	Hummel et al. (2012)
Defence signalling	Altered expression of signalling	NPR1	Xu et al. (2017)
pathway	components		Ad ctur. (2017)
parmay	Altered expression of transcription factors	IPA1/OsSPL14	Wang et al. (2018b)
Recessive resistance	Gene deletion	mlo	Kusch & Panstruga (2017)
alleles	Gene modification	bs5	Iliescu et al. (2013)
Dominant plant resistance proteins	Interspecies transfer of signalling components	PFLP	Huang et al. (2007); Namukwaya et al. (2012); J. N. Tripathy et al. (2014); Tang et al. (2001); Huang et al. (2004); Ger et al. (2014); Yip et al. (2007); Liau et al. (2003)
	Transfer of detoxifying enzymes targeting pathogen toxins	Oxalate oxidase	Donaldson et al. (2001); Schneider et al. (2002); Hu et al. (2003); Dong et al. (2008); Walz et al. (2008); Partridge- Telenko et al. (2011)
	Transfer of adult plant resistance (APR) alleles	Lr34	Krattinger et al. (2016); Risk et al. (2013); Schnippenkoetter et al. (2017); Sucher et al. (2017); Rinaldo et al. (2017)
Antimicrobial compound	Transfer of antimicrobials from plants	Rs-AFP defensin	Jha & Chattoo (2010); Li et al. (2011)
production	Transfer of antimicrobials from microorganisms or animals	Virus KP4	Clausen et al. (2000); Schlaich et al. (2006); Quijano et al. (2016)
	Expression of synthetic antimicrobials	MsrA1	Osusky et al. (2000); Rustagi et al. (2014)
RNAi	Viral gene silencing through RNAi	Coat protein or replicase domain gene from Papaya ringspot virus AC1 from bean golden mosaic virus	Fitch et al. (1992); Ferreira et al. (2002); Ye & Li (2010); www.isaaa.org/ Bonfim et al. (2007); www.isaaa/org
		Coat protein gene from plum pox virus	Scorza et al. (2013); www.isaaa.org/
		Coat protein gene from potato virus Y Putative replicase domain or helicase domain gene from potato leaf roll virus	Lawson et al. (1990); www.isaaa.org/ Lawson et al. (2001); www.isaaa.org/
		Coat protein gene from cucumber mosaic cucumovirus, zucchini yellow mosaic potyvirus and watermelon mosaic potyvirus 2	Tricoli et al. (1995); www.isaaa.org/
	Fungal and comycete gene silencing through RNAi	HAM34 or CES1 gene of Bremia lactucae	Govindarajulu et al. (2015)

Résistances par utilisation de l'ARN interférence (RNAi)




FIGURE 1 | (A) In RNAi-mediated gene silencing, long dsRNA/hpRNA gets chopped off into short (21–23 nucleotides) interfering RNA duplexes (siRNAs), siRNA duplexes unwind and one of the strands (Guide strand) gets incorporated into the RISC complex, which finally degrades the targeted complementary mRNA. RISC complex gets recycled again; (B) Dicer-mediated processing of long dsRNA in *Arabidopsis thaliana*. DCL2 generates 22 nucleotide-long siRNAs, which interacts with AGO1 and recruits RDR6 to induce transitive silencing. DCL3 generates 24 nucleotide-long siRNAs, which interacts with AGO4 and induces DNA methylation by recruiting DNA PolV, whereas DCL4 generates 21 nucleotide-long siRNAs, which interacts with AGO1 and directs the cleavage of complementary mRNA.

Transgenic strategies to confer resistance against viruses in rice plants

Takahide Sasaya^{1*}, Eiko Nakazono-Nagaoka², Hiroaki Saika³, Hideyuki Aoki⁴, Akihiro Hiraguri⁵, Osamu Netsu⁵, Tamaki Uehara-Ichiki³, Masatoshi Onuki¹, Seichi Toki³, Koji Saito⁴ and Osamu Yatou⁴

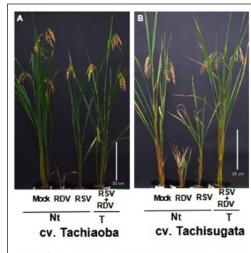


FIGURE 5 | Transgenic forage rice cultivars inoculated with Rice stripe virus (RSV) and Rice dwarf virus (RDV) (from Sasaya et al., 2013). Phenotypes of transgenic forage rice cultivars Tachiaoba (A) and Tachisugata (B) that harbored the RNAi trigger sequence targeting the RSV gene for pC3 and the RDV gene for Pns12 at 5 months after RDV and RSV inoculation. Ten-day-old transgenic forage rice seedlings were exposed to approximately 15 RSV-carrying viruliferous small brown hoppers and 10 RDV-carrying leaf hoppers per plant for each 1 day, and evaluate plant response to infection with RSV and RDV at 4 months after virus inoculation. The forage rice cultivars in pots from left to right are: mock-inoculated non-transgenic forage rice cultivars (Nt) exposed to virus-free insect vectors, showing normal growth; RDV-inoculated non-transgenic forage rice cultivars (Nt), showing typical symptoms caused by RDV infection; RSV-inoculated non-transgenic forage rice cultivars (Nt), showing typical symptoms caused by RSV infection; RDV+RSV-inoculated transgenic forage rice cultivars, showing healthy growth and fertility. Bar, 30 cm.

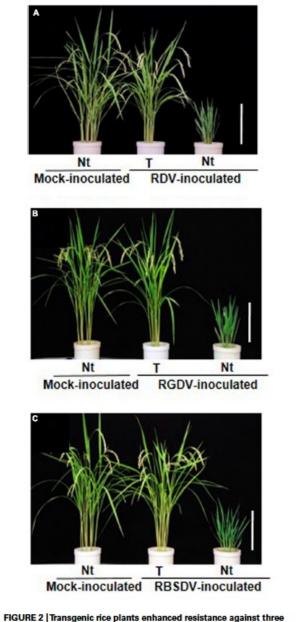
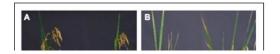


FIGURE 2 | Transgenic rice plants enhanced resistance against three rice-infecting reoviruses. (A) Phenotype of transgenic rice plants (cv.


10

Transgenic strategies to confer resistance against viruses in rice plants

Takahide Sasaya¹*, Eiko Nakazono-Nagaoka², Hiroaki Saika³, Hideyuki Aoki⁴, Akihiro Hiraguri⁵, Osamu Netsu⁵, Tamaki Uehara-Ichiki³, Masatoshi Onuki¹, Seichi Toki³, Koji Saito⁴ and Osamu Yatou⁴

Table 2 | Degree of resistance against Rice stripe virus (RSV) infection in transgenic rice plants induced by different RNAi-targets of RSV genesa.

Target gene for	Location/putative function ^b	GenBank accession	Resistance ^c
pC1	RNA polymerase	D31879	Strong
p2	Unknown	D13176	Moderate
pC2	Glycoprotein-like	D13176	Absent
p3	Silencing suppressor	X53563	Moderate
pC3	Nucleocapsid protein	X53563	Immune
p4	Crystalline inclusion	D10979	Absent
pC4	Movement protein	D10979	Immune

Mock-inoculated RGSV-inoculated

FIGURE 4 | Transgenic rice plants with enhanced resistance against two tenuiviruses. (A) Phenotype of transgenic rice plants (cv. Nipponbare)

forage rice cultivars, showing healthy growth and fertility. Bar, 30 cm.

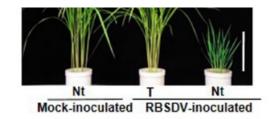


FIGURE 2 | Transgenic rice plants enhanced resistance against three rice-infecting reoviruses. (A) Phenotype of transgenic rice plants (cv.

TABLE 1 | RNAi-targeted editing in plants against insects.

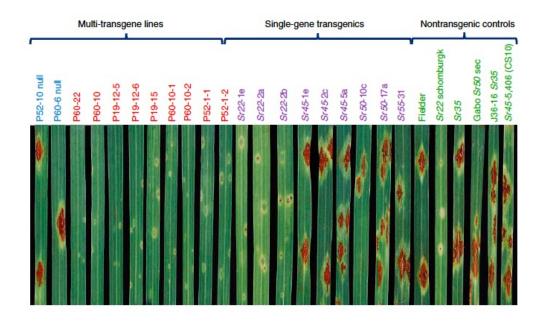
Insects	Target gene	Plant	Phenotype	References
Helicoverpa armigera (Cotton bollworm)	Ecdysone receptor	Tobacco	Reduction of growth followed by death	Zhu et al., 2012
Diabrotica virgifera (Western corn rootworm)	V-ATPaseA	Maize	Stunted growth	Baum et al., 2007
Spodoptera exigua	Ecdysone receptor	Tobacco	Death rate increased	Zhu et al., 2012
Sitobion avenae (Grain aphid)	Salivary proteins DSR32/DSR33	Wheat	Death rate increased	Wang et al., 2015
Glossina morsitans morsitans	Transferrin	Pea, clover, alfalfa	Mortality rate significantly low	Walshe et al., 2009
Acyrthosiphon pisum	Aquaporin	Pea, clover, alfalfa	Osmotic pressure increased	Shakesby et al., 2009
Acyrthosiphon pisum	SHP	Pea, clover, alfalfa	Reduced fertility	Will and Vilcinskas, 2015
Acyrthosiphon pisum	V-ATPase E	Pea, clover, alfalfa	dsRNA degradation in saliva	Christiaens and Smagghe, 2014
Nilaparvata lugens (brown plant hopper)	Trehalose PO4 synthase	Rice	Lethality	Chen et al., 2010
Aphis gossypii (Cotton aphid)	AgOBP2	Cotton	Failure of recognizing host	Rebijith et al., 2016
Sitobion avenae (Grain aphid)	Catalase gene CAT	Wheat	Survival rate reduced	Deng and Zhao, 2014
Sitobion avenae Grain aphid	Cytochrome c oxidase	Wheat	Increased mortality	Zhang et al., 2013
Greenbug Schizaphis graminum	Salivary protein C002	Wheat	Lethal	Zhang Y. et al., 2015
Peregrinus maidis	V-ATPase B&D	Corn	Reduced fertility	Yao et al., 2013
Lygus lineolaris	Apoptosis inhibitor	Cotton, alfalfa, beans	Digestion of dsRNA	Allen and Walker, 2012
Phyllotreta striolata	Arginine kinase	Cruciferae crops	Retarded development/ increased mortality	Zhao et al., 2008

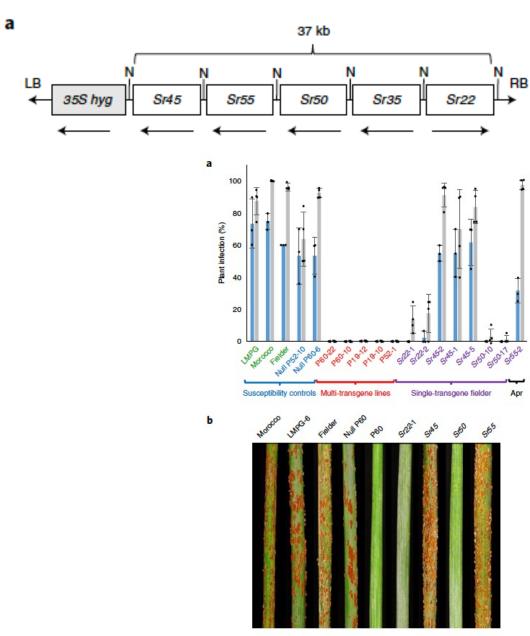
TABLE 2 | RNAi-targeted editing in plants against fungi.

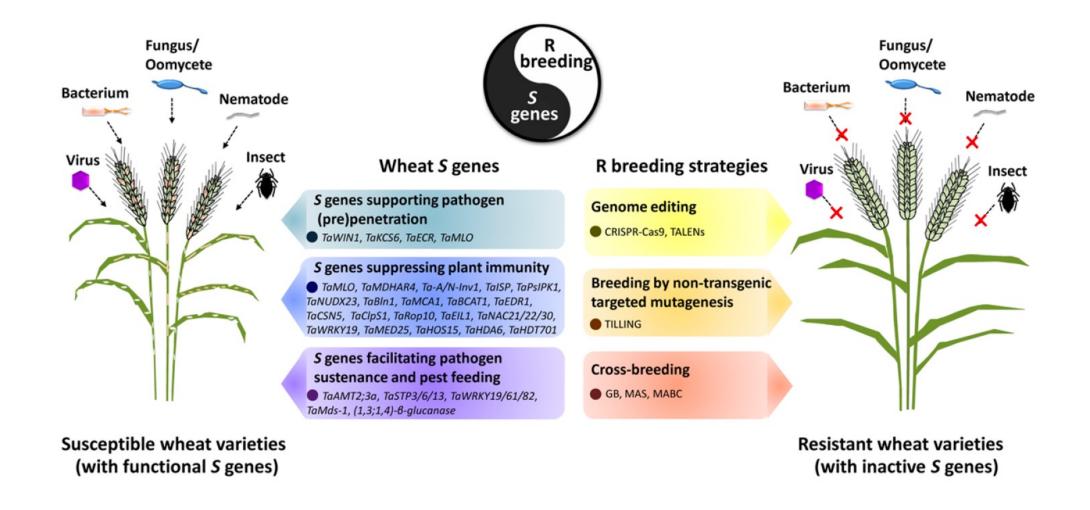
References owth and Panwar et al., 2013 Riechen, 2007
Riechen, 2007
*
n McDonald et al., 20
Nowara et al., 2010
action Wang et al., 2011 asitica
Tinoco et al., 2010
to infection Hernández et al., 20
esistance Yin et al., 2011
duction of Spada et al., 2021
disease Wang M. et al., 201
Sun et al., 2017
y mold Xiong et al., 2019
S

TABLE 3 | RNAi-targeted editing in plants against nematodes.

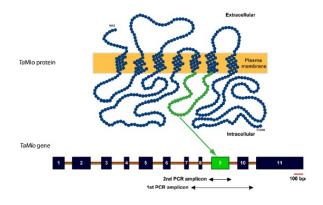
Nematodes	Target gene	Plant	Phenotype	References
Meloidogyne incognita	Splicing factor and integrase	Tobacco	>90% reduction in established nematodes	Yadav et al., 2006
Heterodera glycines	Prp-17, Cpn-1, mRNA splicing factor	Soybeans	Significant reduction in number of nematode eggs	Li et al., 2010
Radopholus similis	Rs-cb-1	Tobacco	Inhibition of development, reduced pathogenicity	Li et al., 2015
Ditylenchus destructor	Unc-15	Sweet potato	Reduced rate of infection area	Fan et al., 2015
Meloidogyne enterolobii	MeTCTP	Tomato	Attenuation in parasitism	Zhuo et al., 2017
Pratylenchus vulnus	Pv010	Walnut	Significant reduction in number of nematodes per root	Walawage et al., 2013
Heterodera glycines	Spliceosomal SR protein, ribosomal protein	Soybean	Significant reduction in number of female cysts	Klink et al., 2009
Meloidogyne chitwoodi	Mc16D10L	Potato	Significant reduction (~68%) in number of egg masses	Dinh et al., 2014a
Heterodera schachtii	3B05, 4G06, 8H07, and 10A06	Arabidopsis	23-64% reduction in number of mature nematode females	Sindhu et al., 2009
Heterodera glycines	Major sperm protein (MSP)	Soybeans	68% reduction in eggs per gram of root tissue	Steeves et al., 2006
Meloidogyne javanica	Putative transcription factor, MjTis11	Tobacco	Consistent silencing of MjTis11	Fairbairn et al., 2007
Meloidogyne chitwoodi	Mc16D10L	Arabidopsis	Significant reduction (~60%) in number of egg masses	Dinh et al., 2014b






A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat

Ming Luo¹, Liqiong Xie², Soma Chakraborty¹, Aihua Wang¹, Oadi Matny®³, Michelle Jugovich³,
James A. Kolmer⁴, Terese Richardson¹, Dhara Bhatt¹, Mohammad Hoque¹, Mehran Patpour®⁵,
Chris Sørensen®⁵, Diana Ortiz®⁴, Peter Dodds®¹, Burkhard Steuernagel®७, Brande B. H. Wulff®ゥ,
Narayana M. Upadhyaya®¹, Rohit Mago®¹, Sambasivam Periyannan¹, Evans Lagudah®¹,
Roger Freedman®, T. Lynne Reuber®, Brian J. Steffenson®³ and Michael Ayliffe®¹⊠



Gènes de sensibilité

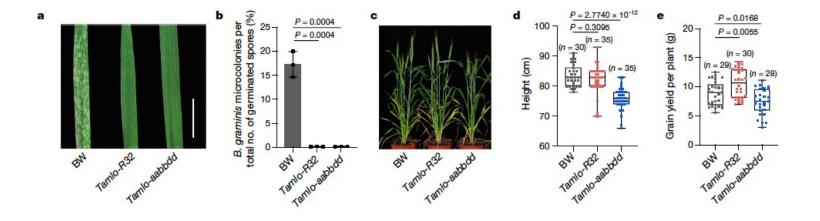
Mutagénèse par TILLING

Plant Biotechnology Journal (2017) 15, pp. 367-378

doi: 10.1111/pbi.12631

mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach

Johanna Acevedo-Garcia¹, David Spencer¹, Hannah Thieron¹, Anja Reinstädler¹, Kim Hammond-Kosack², Andrew L. Phillips² and Ralph Panstruga¹*


Tamlo-aaBBDD
Tamlo-AABbdd line 1

Tamlo-AABbdd line 1

Tamlo-AABbdd line 2

Tamlo-AABbdd line 2

Tamlo-aabbdd line 2

Mutagénèse ciblée par Genome Editing - CRISPR

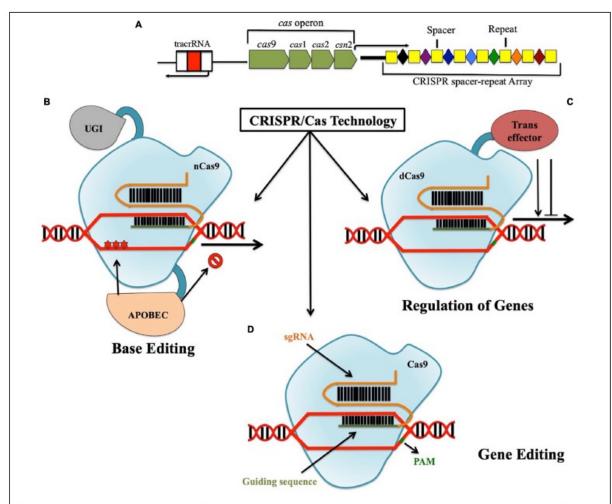
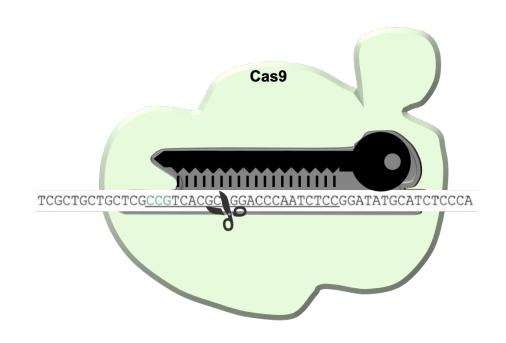



FIGURE 2 | CRISPR locus in genome comprises of CRISPR spacer-repeat array, Cas operon, and tracrRNA. Apart from being able to specifically target nucleotides in the genome (gene editing), using impaired Cas9 enzymes such as dCas9 and nickase Cas9, gene regulation and targeted base editing without double-strand breaks can also be achieved, respectively. (A) CRISPR locus in genome; (B) CRISPR/Cas9-mediated gene editing; (C) CRISPR/dCas9-mediated gene regulation; (D) CRISPR/nCas9-mediated base editing.

L'édition d'allèles pour la résistance à l'oïdium

Genome-edited powdery mildew resistance in wheat without growth penalties

tps://doi.org/10.1038/s41586-022-04395-9

Shengnan Li³, Dexing Lin³-3-4*, Yunwei Zhang³-3*, Min Deng²-4*, Yongxing Chen², Bin Li³-8

Boshu Li²-3*, Yuan Lei²-3*, Yangpeng Wang³-3, Long Zhao²-4*, Yueting Liang³-5, Jinxing Liu³-3,

Kunling Chen²-2*, Zhiyong Liu³-4*, Jun Xiao²-4-6-3, Jin-Long Qiu³-5: € Caixia Gao²-3-4-5

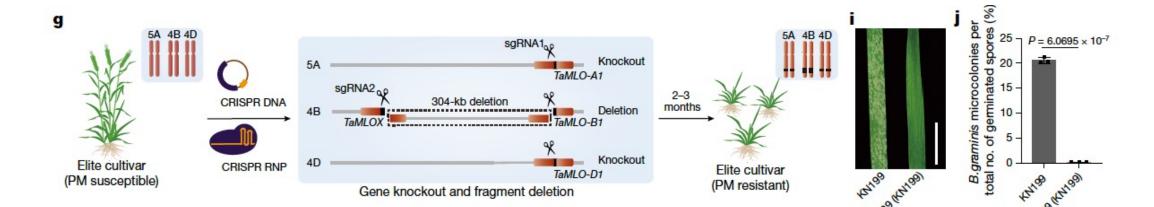
Kunling Chen²-2*, Zhiyong Liu³-4*, Jun Xiao²-4-6-5, Jin-Long Qiu³-5: € Caixia Gao²-3-4-5

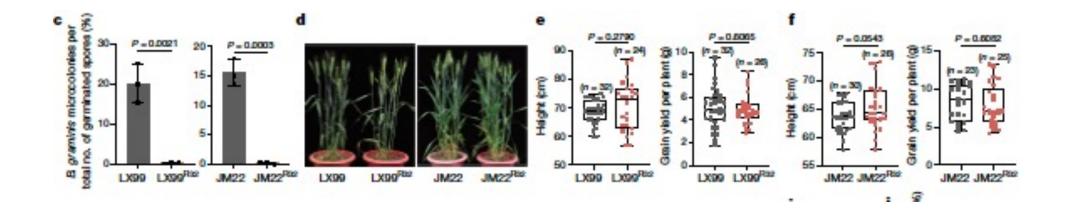
Kunling Chen²-2*, Zhiyong Liu³-4*, Jun Xiao²-4-6-5, Jin-Long Qiu³-5: € Caixia Gao²-3-4-5

Kunling Chen²-2*, Zhiyong Liu³-4*, Jun Xiao²-4-6-5, Jin-Long Qiu³-5: € Caixia Gao²-3-4-5

Kunling Chen²-2*, Zhiyong Liu³-4*, Jun Xiao²-4-6-5, Jin-Long Qiu³-5: € Caixia Gao²-3-4-5

Kunling Chen²-2*, Zhiyong Liu³-4*, Jun Xiao²-4-6-5, Jin-Long Qiu³-5: € Caixia Gao²-3-4-5

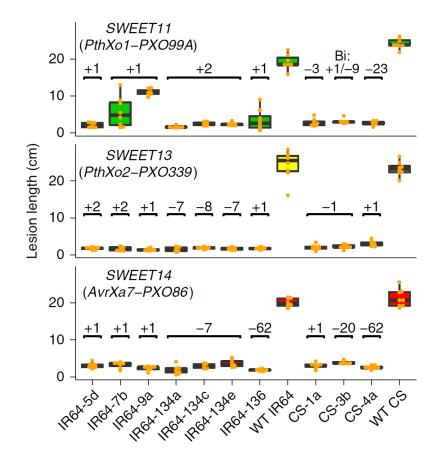

Kunling Chen²-2*, Zhiyong Liu³-4*, Jun Xiao²-4-6-5, Jin-Long Qiu³-5: € Caixia Gao²-3-4-5


Kunling Chen²-2*, Zhiyong Liu³-4*, Jun Xiao²-4-6-5, Jin-Long Qiu³-5: € Caixia Gao²-3-4-5

Kunling Chen²-2*, Zhiyong Liu³-4*, Jun Xiao²-4-6-5, Jin-Long Qiu³-5: € Caixia Gao²-3-4-5

Kunling Chen²-2*, Zhiyong Liu³-4*, Jun Xiao²-4-5

Kunling Chen²-2*, Zhiyong Liu³-4*, Jun Xiao²-4*, Zhiyong Liu³-4*, Zhiyong Liu³



Gènes de sensibilité : exemple du gène Sweet

Broad-spectrum resistance to bacterial blight in rice using genome editing

Ricardo Oliva ^{Ours}, Chonghui Ji¹², Genelou Atlenza-Grande¹⁰², José C. Huguet-Tapia¹³,
Alvaro Perez-Quintero ^{Ours}, Ting Li¹⁰, Joon-Seob Eom', Chenhao Li¹, Hanna Nguyen ^O,
Bo Liu¹, Florence Auguy', Coline Sciallano', Van T. Luu¹, Gerbert S. Dossá; Sébastien Cunnac',
Sarah M. Schmidt⁴, Inez H. Slamet-Loedn', Casiana Vera Cruz', Boris Szurek', Wolf B. Frommer ^{Outs},
Engle E. Mikhie', Jone Birey Yang-Garante.

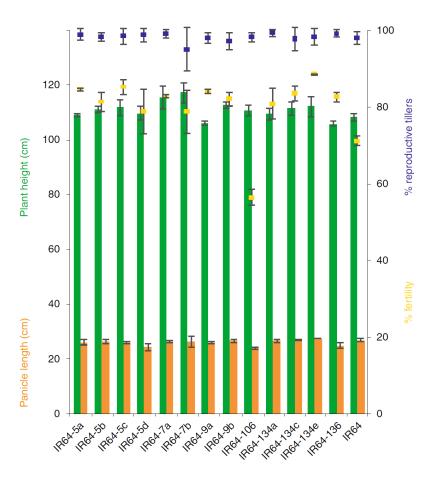


Table 1 A summary of the studies on CRISPR-mediated plant disease resistance

Pathogen type	Plant(s)	Desired modification	Targeted DNA/ RNA	Targeted pathogen(s)/ disease(s)	Results	Reference
m	Arabidopsis	Virus RNA genome disruption	Virus RNA genome	Tumip mosaic virus	Indels in virus RNA	[69]
	N. benthamiana	Virus RNA genome disruption	Virus RNA genome	Tumip mosaic virus	Indels in virus RNA	[37]
	Rice, N. benthamiana	Virus RNA genome disruption	Virus RNA genome	Southern rice black- streaked dwarf virus, Tobacco mosaic virus	Reduction in virus levels and disease symptoms	[70]
	Arabidopsis, N. benthamiana	Virus RNA genome disruption	Virus RNA genome	Cucumber mosaic virus, Tobacco mosaic virus	Reduction in virus levels and disease symptoms	711
	N. benthamiana	Virus DNA disruption	Virus DNA Rep, IR, and Cp	Beet curly top virus, Merremia mosaic virus, Tomato yellow leaf curl virus	Indels in virus DNA	[72]
	N. benthamiana	Virus DNA disruption	Virus DNA and satellite sequences	Cotton leaf curl Kokhran virus, Tornato yellow leaf aurl Sardinian virus, Tornato yellow leaf aurl virus, Merremia mosaic virus, BCTV-Logan, BCTV-Worland	Indels in virus DNA	[73]
	N. benthamiana	Virus DNA disruption	Virus DNA Rep A/Rep and LIR	Bean yellow dwarf virus	Indels in virus DNA, resistance to virus	74
	Arabidopsis, N. benthamiana	Virus DNA disruption	Virus DNA Rep, IR, and CP	Beet severe curly top virus	Indels in virus DNA, resistance to virus	[75]
	Tomato, N. benthamiana	Virus DNA disruption	Virus DNA Rep, IR, and Cp	Tomato yellow leaf aut virus	Indels in virus DNA, resistance to virus	[76]
	N. benthamiana	Virus DNA disruption	Multiplex editing at Rep and IR	Cotton leaf curl Multan virus	Significantly low virus accumulation and decreased disease symptoms	[77]
	Cassava	Virus DNA disruption	AC2 and AC3	African cassava mosaic virus	Indels in virus DNA but no virus resistance	[78]
	N. benthamiana	Virus DNA disruption	Multiplex editing at virus DNA Rep, IR, and Cp	Chilli leaf curl virus	Significantly low virus accumulation and decreased disease symptoms	[79]
	Banana	Virus DNA disruption	Virus sequences in the host plantain genome	Endogenous banana streak virus	75% of pl0ants remain asymptomatic	[80]
		Biomimidking*	E#4e1	Clover yellow vein virus	Reduced virus accumulation	[65]
	Rice	Biomimidking*	El4g	Rice tungro spherical virus	Resistance to virus	[81]
	Cassava	Gene disruption	nCBP-1, nCBP-2	Cassava brown streak disease	Suppressed disease	[82]

Table 1 A summary of the studies on CRISPR-mediated plant disease resistance (Continued)

type	Plant(s)	Desired modification	Targeted DNA/ RNA	Targeted pathogen(s)/ disease(s)	Results	Reference
					symptoms	
	Arabidopsis	Gene disruption	EF4E	Tumip mosaic virus	Resistance to virus	[47]
	Cucumber	Gene disruption	eF4E	Cucumber vein yellowing virus (ipomovirus), Zucchini yellow mosaic virus, and Papaya ring spot mosaic virus-W (potyviruses)	Resistance to three viruses	[46]
Fungus	Tomato	Gene disruption	Multiplex gRNA at Pmr4	Powdery mildew caused by Oidium neolycopersia	Significant reduction in mildew symptoms	[83]
	Tomato	Gene disruption	SIMapk3	Botrytis cinerea	Increased resistance to B. cineres	[84]
	Tomato	Gene disruption	Salyc08g075770	Fusarium wilt	Tolerance to fusarium wilt	[85]
	Rice	Gene disruption	Single and multiplex gRNA at OsERF922	Rice blast caused by Magnaporthe oryzae	Significantly decreased blast lesions	[86]
	Grape	Gene disruption	WWRKY52	B. ánerea	Increased resistance to B. cinerea	[87]
	Tomato	Gene disruption	SMb1	Powdery mildew	Resistance to powdery mildew	[88]
	Banana	Gene insertion	RGA2, Ced9	Fusarium wilt caused by Fusarium oxysporum f. sp. aubense tropical race 4 (TR4)	Significant reduction in disease	[89]
	Rice	Gene disruption	OMPKS	Fungal (Magnaporthe grisea) and bacterial (Burkholderia glumae) pathogens	Indels in the target; resistance not confirmed	[90]
	Grape	Gene disruption	Mo-7	Powdery mildew	Indels in the target; resistance not confirmed	[91]
	Wheat	Gene disruption	TaMlo-A1, TaMlo- B1, and TaMlo-D1	Powdery mildew	High tolerance to powdery mildew	[92]
	Wheat	Gene disruption	TaMlo	Powdery mildew	Indels in the target; resistance not confirmed	[30]
	Wheat	Gene disruption	TaEdr1 (three homologs)	Powdery mildew	Resistance to powdery mildew	[93]
Bacteria	Rice	Gene disruption	OsSWEET13	Bacterial blight caused by Xanthomonas avyzae pv. Ovyzae (Xoo)	Resistance not confirmed	[94]
	Rice	Gene disruption	OsSWEET11	Bacterial blight	Enhanced resistance to Xoo	[95]
	Rice	Gene and promoter disruption	TALE-binding elements (EBEs) in OxSWEET13 promoter,	Bacterial blight caused by Xoo	Broad- spectrum resistance against	[50]

Table 1 A summary of the studies on CRISPR-mediated plant disease resistance (Continued)

Pathogen type	Plant(s)	Desired modification	Targeted DNA/ RNA	Targeted pathogen(s)/ disease(s)	Results	Reference
			OsSWEETT11, and OsSWEEt14 genes		multiple Xoo strains	
	Rice	Promoter disruption	OsSWEET11, OsSWEET13, and OsSWEET14	Bacterial blight	Increased resistance to bacterial blight, confirmed in field trials	[51]
	Apple	Gene disruption	DIPM-1, DIPM-2, and DIPM-4	Fire blight disease (caused by Erwinia amylovora)	Indels in the target; resistance not confirmed	[91]
	Rice	Promoter disruption	OxSWEET11, OxSWEET14	Bacterial blight	Indels in promoter; disease resistance not confirmed	[96]
	Tomato	Gene repair	Jaz2	Bacterial speck disease caused by Pseudomonas syringae pv. tornato DC 3000	Resistance to bacterial speck disease	[97]
	Tomato	Gene disruption	Dmi6	Pseudomonas syringae, Phytophthora capsici, and Xanthomonas spp.	Resistance to P. syringae, P. capsia, and Xanthomonas spp.	[98]
	Grapefruit	Promoter disruption	CsLOB1	Citrus canker	Significantly reduced canker symptoms	[99]
	Wanjincheng orange	Promoter disruption	GLO81	Citrus canker	Disease severity decreased by 83,2-98,3%	[100]
Oomycete	Papaya	Gene disruption	PpalEPICB	Phytophthora palmivora	Increased resistance against P. palmivora	[101]
	Theobroma cacao	Gene disruption	TdNPR3	Phytophthora tropicalis	Increased resistance against P. tropicals	[102]

Les facteurs de sensibilité peuvent être partagés par plusieurs agents pathogènes

Ouvre la voie à la construction de résistances multi-pathogènes

Mutant MNR 220 (Campbell et al, TAG 2012)

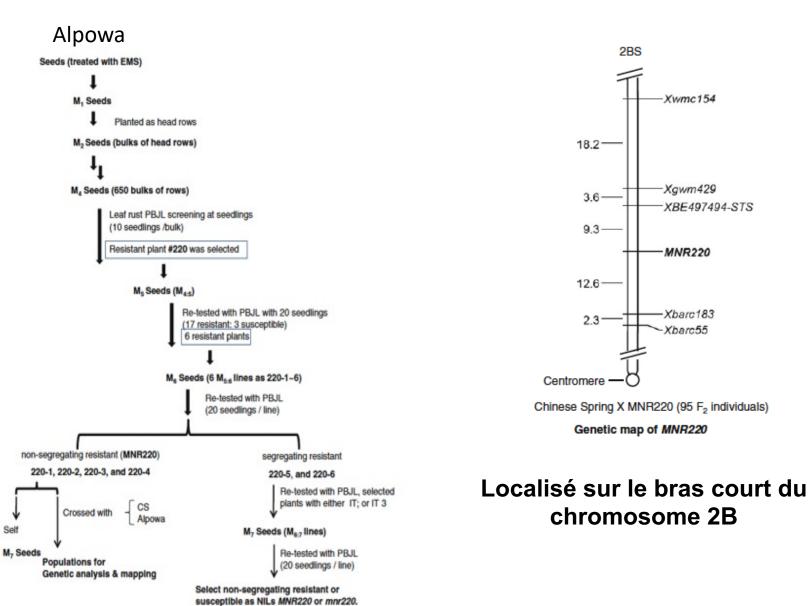


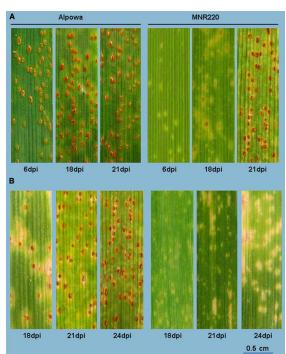
Fig. 1 A scheme showing steps of mutant identification, confirmation and genetic analysis. Mgg, 1 line is used to describe n, 1 generation seeds that derived from one selected n generation plant

Xwmc154

Xgwm429

MNR220

-Xbarc183

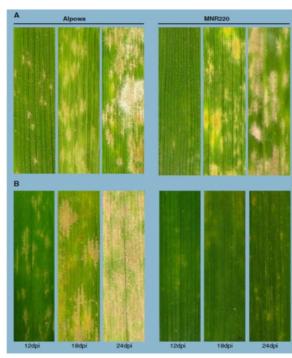

Xbarc55

XBE497494-STS

Mutant MNR 220 (Campbell et al, TAG 2012)

Puccinia triticina (wheat leaf rust)
P. graminis f. sp. tritici (stem rust)
P. striiformis f. sp. tritici (stripe rust)
Blumeria graminis f. sp. tritici (powdery mildew)

Biotrophes

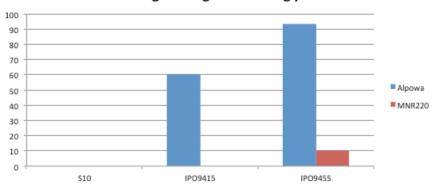


Puccinia triticina

adultes

Plantes

Plantules

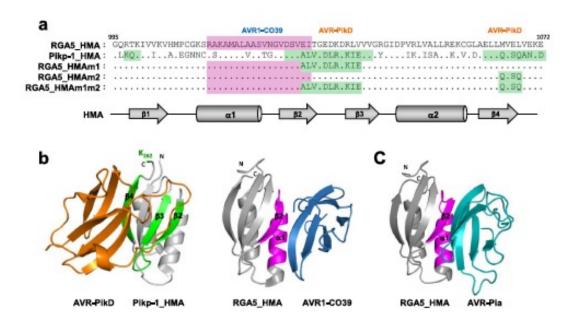


Blumeria graminis f. sp. tritici

Septoriose Zymoseptoria tritici

Percentage of regions bearing picnidia

Prime Editing (Edition primaire ou édition de base)


ARTICLE

https://doi.org/10.1038/s41467-022-29196-6

OPEN

New recognition specificity in a plant immune receptor by molecular engineering of its integrated domain

Stella Cesario lisa, Yuxuan Xio 1, Nathalie Declerck¹, Véronique Chalvon¹, Léa Mammrio ², Martine Pugnière o ³, Corinne Henriquet³, Karine de Guillen o ², Vincent Chochois⁴, André Padilla o ² & Thomas Kroj o 1 sa

Plant nucleotide-binding and leucine-rich repeat domain proteins (NLRs)

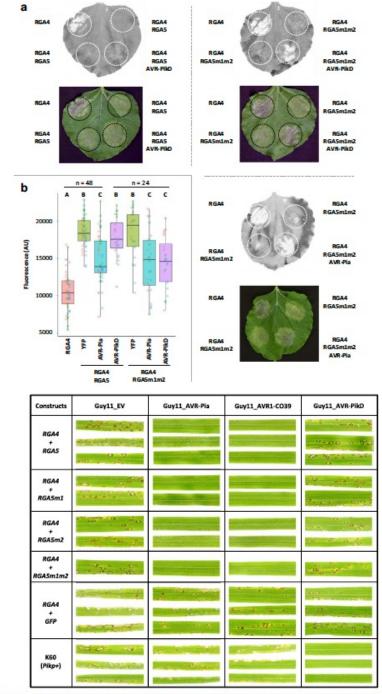
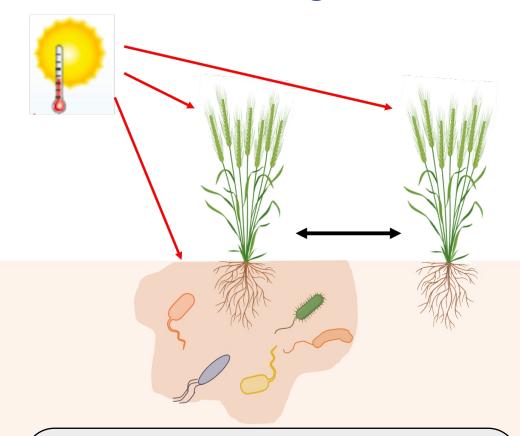


Fig. 8 The RGA5 m1, m2, and m1m2 mutants recognize AVR-Pia but not AVR-PikD in rice. The rice cultivar Nipponbare was co-transformed with a

Possibilités offertes par les biotechnologies

- Création de novo de sources de résistance pour des maladies « orphelines »
- Remplacement d'allèles simple ou multiplex
- Suppression du linkage drive
- Possibilités de créer de nouvelle combinaison d'allèles pour des gènes très étroitement liés
- Transfert rapide d'allèles exotiques vers des variétés « Elites »
- Réactivation des pseudogènes
- Création de séries alléliques originales pour des gènes R clonés


24

Rendre plus durable les résistances aux pathogènes et bioagresseurs face au changement climatique

Identifier des sources de résistances durables

Bases génétiques et moléculaires

Mécanismes (éco)physiologiques

Solutions agronomiques

Systèmes de culture Gestion des résistances (parcelles, paysage, territoire)

. .

Interactions
plantepathogèneenvironnement

Effets des associations plante-plante

Rôle des microbiotes

